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Abstract 

This paper investigates trajectories within the Alpha Centauri system to reach planet Proxima b. These trajectories 
come in the form of connections between the classical Lagrange points of Alpha-Centauri’s binary system (composed 
of the stars Alpha Centauri A and B, AC-A and AC-B) and the classical Lagrange points of the Alpha Centauri C 
(AC-C)/Proxima b system. These so-called heteroclinic connections are sought using a patched restricted three-body 
problem method. A genetic algorithm is applied to optimize the linkage conditions between the two three-body 
systems, focusing on minimizing the position, velocity, and time error at linkage. Four different futuristic, graphene-
based sail configurations are used for the analyses: two sails with a reflective coating on only one side of the sail 
with lightness numbers equal to β = 100 and β = 1779, and two sails with a reflective coating on both sides (again, 
considering β = 100 and β = 1779). Results from the genetic algorithm show that, for example, a transfer from the 
L2-point in the AC-A/AC-B system to the L1-point in the AC-C/Proxima b system can be accomplished with a transfer 
time of 235 years for the one-sided graphene-based sail with β = 1779. 

1. Introduction 

While tracking a comet with his telescope in 1689, as-
tronomer Jean Richaud came across the Centaurus con-
stellation. For the first time, he noticed that the star 
known back then as Alpha Centauri was, in fact, a bi-
nary star system [1]. Another 80 years later, in 1915, 
astronomer Robert T. A. Innes discovered Alpha Cen-
tauri C (also referred to as Proxima Centauri) [2], lo-
cated at 4.25 lightyears from the Solar system, there-
fore taking on the title of being our closest neighbor. 
As of today, there is strong evidence that Proxima Cen-
tauri is in bound orbit about the binary system [3]. At 
least two planets are confirmed to be in orbit about Prox-
ima Centauri: Proxima b and Proxima c [4, 5]. One 
of these two, Proxima b, is a rocky planet in the habit-
able zone of Proxima Centauri, potentially bearing life. 
In-situ measurements of Proxima b would provide valu-
able information in the discussion about life formation 
on Proxima b and would help our understanding of life 
formation on rocky exoplanets. A mission to this sys-
tem is thus endorsed by a strong scientific interest. 

The Breakthrough Initiatives have proposed a mis-
sion to the Alpha Centauri system using photon sails: 
Breakthrough Starshot.1 The aim of this project is to 
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send a swarm of ultra-lightweight sails with gram-sized 
payloads to Alpha Centauri to perform a flyby of the 
binary system. Using a 100 GW Earth-based laser ar-
ray, the sails are propelled to 20% of the speed of light, 
reaching the system in a little over twenty years. In Ref-
erences [6, 7, 8], several alternative mission scenarios 
are investigated. Using a futuristic graphene-based sail, 
the authors studied the possibility of getting captured 
in the binary system, to then continue towards Proxima 
Centauri using gravity assists. To get captured in bound 
orbit about Proxima Centauri, they calculated a maxi-
mum arrival speed in the Alpha Centauri A/B system of 
5.7% of the speed of light. This results in a 75 years 
journey from Earth and an additional 46 years towards 
Proxima Centauri. In Reference [9], comparable results 
are presented for capture in the Alpha Centauri A-B sys-
tem using the same sail configuration. 

The research presented in this paper focuses on find-
ing photon-sail trajectories starting from the classical 
colinear Lagrange points in the binary system to the 
classical colinear and triangular Lagrange points in the 
AC-C/Proxima b system. As described in previous re-
search [10], the classical triangular Lagrange points are 
not suited as departure locations in the binary system, 
because to maintain at the classical Lagrange points, the 
sail should not create any acceleration. This requires an 
edge-on position with respect to the incoming sunlight 
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Table 1: Parameters for the three stars within the Alpha Centauri 
system. The mass, luminosity and radius are expressed in Solar units: 
m⊙ = 1.989110∗1030 kg, R⊙ = 6.9598∗105 km and L⊙ = 3.854∗1026 

W [15, 16, 17]. 

AC-A AC-B AC-C Sun Unit 

Mass m 1.100 0.9070 0.1230 1 m⊙ 

Luminosity L 1.519 0.5002 0.0015 1 L⊙ 

Radius R 1.230 0.8570 0.1450 1 R⊙ 

Avg. Temperature T 5790 5260 3040 5770 K 

which is not achievable due to the binary star nature of 
the AC-A/AC-B system. Due to the significant eccen-
tricity of both the AC-A/AC-B system (referred to as 
the departure system) and the AC-C/Proxima b system 
(referred to as the arrival system), the elliptic restricted 
three-body problem (ERTBP) is adopted as dynamical 
framework. Adequate connections between the two sys-
tems are sought by using a patched restricted three-body 
problem approximation method [11, 12, 13]. In this 
method, the two systems are ”patched” together on a 
suitable Poincar´ e section to find a transfer. 

The aim is to connect the unstable manifolds of the 
Lagrange points of the departure system, with the sta-
ble manifolds of the Lagrange points in the arrival sys-
tem. This approach has already proved to be success-
ful for finding transfers between Lagrange points in 
other photon-sail dynamical systems [13, 14]. To find 
a proper link between the two systems, the error be-
tween the departure and arrival segments of the trajec-
tory at the Poincar´ e section is evaluated. A numerical 
optimization problem unfolds in which the error in po-
sition, velocity and time is minimized. Similar as in 
Reference [13], this work uses two techniques to solve 
this numerical problem. Initial knowledge of the prob-
lem is gathered by means of a design space exploration, 
after which a genetic algorithm is applied to further op-
timize the link between the systems. 

2. Alpha Centauri System 

As briefly mentioned in Section 1, Alpha Centauri is 
a triple star system located at 4.37 light-years from the 
Sun [15]. In Table 1, some relevant parameters of the 
stars in the system are given. Figure 1 gives an overview 
of the orbits of the different bodies in the system. Note 
that the orbits and the binary system and Proxima b are 
enlarged to clearly visualize the system. In the center of 
the system, stars AC-A and AC-B form a binary star sys-
tem, mutually rotating around the barycenter with a pe-

Figure 1: An overview of the positions and orbits of the three stars, 
including the assumed orbit of Proxima b, at reference epoch J2000. 
The orbit of AC-C is to scale. The orbits of AC-A and AC-B are 
enlarged by a factor 200. Proxima b’s orbit is enlarged by a factor of 
80,000. 

Table 2: Orbital elements of Proxima b, AC-A and AC-B [4, 9, 21, 
22, 23]. The elements for Proxima b and AC-A/AC-B are given in the 
observer frame Oa and Od , respectively. 

Proxima b AC-A AC-B Unit 

Semi-major axis s 0.05 10.79 12.73 AU 
Eccentricity e 0.105 0.52 0.52 -
Inclination i Unknown 79.32 79.32 deg 
Longitude of the ascending node Ω Unknown 205.06 205.06 deg 
Argument of periastron Ψ 310.0 52.0 232.0 deg 
Ref. time of periastron T0 August 2035 August 2035 August 2035 -

riod of approximately 80 years [18]. In reference [19], 
it is demonstrated with a high degree of confidence that 
the third star AC-C is in a bound orbit about the binary 
system. Improved orbital parameters of AC-C’s orbit 
can be found in Reference [20]. The used data is given 
in the departure observer frame Od , which is further ex-
plained in Section 3.1. AC-C orbits the binary system 
at approximately 13,000 AU. It is a red-dwarf star with 
a significantly smaller luminosity and mass than AC-A 
and AC-B. 

At present, it has been confirmed that two planets are 
in orbit about AC-C: Proxima b and Proxima c [21, 24]. 
Only the parameters of Proxima b are presented in Ta-
ble 2, given in the arrival observer frame Oa, see Sec-
tion 3.1, since its location and characteristics make it 
the most interesting of the two. Proxima b is an Earth-
like, rocky planet located in the habitable zone. From 
the data in Table 2 it is clear that there are two unknown 
orbital elements: the inclination i and right ascension 
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of the ascending node Ω. However, it is known that 
Proxima b does not transit AC-C [25], therefore an in-
clination of close to 90 deg with the plane tangential to 
the line-of-sight is impossible. Thus, in this work an 
inclination of i = 45 deg is assumed. Based on values 
presented in [4, 21, 23], the mass of Proxima b, m proxb, 
is assumed to be 1.3 times that of Earth’s mass (m⊕ = 
5.972 ∗ 1024 kg). 

The reference epoch t0 used in this paper is August 
2035, when AC-A and AC-B are at periastron. Since the 
true anomaly of Proxima b is unknown, its periastron is 
set to be at the reference epoch t0. Note that the period 
of Proxima b is short (11.186 days), whereas transfer 
times of hundreds of years are considered reasonable. 
The assumption on the exact periastron of the arrival 
system is thus of minor influence on the results. The 
relationship between the independent variable θi and di-
mensional time ti, is indirectly given by Kepler’s equa-
tion [26]. 

3. Dynamical model 

This section provides the dynamical model used and 
reference frames employed in this work. 

3.1. Reference Frames 

The following reference frames are used in this re-
search (the corresponding frame transformations can be 
found in Reference [10]): 

1. Inertial frames Id (Xd ,Yd ,Zd ) (origin in the 
barycenter of stars AC-A and AC-B) and 
Ia(Xa ,Ya ,Za) (origin in the barycenter of star AC-
C and planet Proxima b) 

• Xd , Xa Aligned with the major axis of the el-
liptic orbits of the bodies concerned, positive 
in the direction of AC-B/Proxima b’s perias-
tron 

• Zd , Za Aligned with the angular velocity vec-
tor of the system, denoted as ωd and ωa, re-
spectively 

• Yd , Ya Complete the right-handed frames 

2. Observer frames Od ( ˜ Xd , ˜ Yd , ˜ Zd ) (origin in the 
barycenter of stars AC-A and AC-B) and 
Oa( ˜ Xa, ˜ Ya, ˜ Za) (origin in the barycenter of star AC-
C and planet Proxima b) 

• ˜ Xd , ˜ Xa Directed towards the intersection be-
tween a plane perpendicular to ˜ Zd or ˜ Za and 
a line through the Celestial Poles. 

• ˜ Zd , ˜ Za Aligned with the vector pointing to-
wards the Solar system barycenter 

• ˜ Yd , ˜ Ya Complete the right-handed frames 

3. Rotating pulsating barycentric frames Pd (xd ,yd ,zd ) 
(origin in the barycenter of stars AC-A and AC-B) 
and Pa(xa,ya,za) (origin in the barycenter of star 
AC-C and Proxima b) 

• xd ,xa Aligned with the line connecting the 
two primaries, positive in the direction of 
AC-B/Proxima b 

• zd ,za Aligned with the angular velocity vec-
tor of the system, denoted as ωd and ωa, re-
spectively 

• yd ,ya Complete the right-handed frames 

4. Sail-centered frames Sd (r̂A,θ̂A,η̂A) and 
Sa (r̂C ,θ̂C ,η̂C ) - both with origin in the geometric 
center of the sail 

• r̂A ,r̂C Unit vector from the star (either AC-A 
or AC-C) to the sail 

• θ̂A = Zd ×r̂A 
∥Zd ×r̂A∥ 

, θ̂C = Za×r̂C 
∥Za×r̂C ∥ 

• η̂A = r̂A×θ̂A 

∥r̂A×θ̂A ∥ , η̂C = r̂C ×θ̂C 

∥r̂C ×θ̂C ∥ 
5. Galactic frames Gd (x̃d ,ỹd ,z̃d ) (origin in the 

barycenter of stars AC-A and AC-B) and 
Ga (x̃a,ỹa,z̃a) (origin in the center of star AC-C) 

• x̃d ,x̃a Aligned with a line connecting the Sun 
with the center of the Milky Way 

• z̃d ,z̃a Aligned with a vector pointing towards 
the North Galactic Pole 

• ỹd ,ỹa Complete the right-handed frame 

6. ICRS-frames Ed (jd,1, jd,2, jd,3) (origin in the 
barycenter of stars AC-A and AC-B) and 
Ea(ja,1, ja,2, ja,3) (origin in the center of star AC-
C). Axes of these frames are defined relative to 
extragalactic radio sources, see Reference [27]. 

3.2. Photon-Sail Augmented Elliptic Restricted Three-
Body Problem 

Due to the large eccentricity of both the departure 
and arrival systems, the photon-sail augmented ellip-
tic restricted three-body problem is employed. For the 
equations of motion, the models provided in References 
[14, 28] are followed. The independent variable is the 
true anomaly θi, where i = a, d, referring to variables in 
the arrival and departure, respectively.. The equations of 
motion are expressed in the pulsating rotating barycen-
tric frame Pi. The equations of motion are written in 
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dimensionless form using normalized units: the sum of 
the two masses as the unit of mass, the distance between 
the masses as the unit of length, and the inverse of the 
system’s angular velocity 1/ωi as the unit of time. The 
mass parameter is introduced, µi = m2,i 

(m1,i+m2,i) 
, in which 

m1,i corresponds to the primary with the larger mass, 
see Table 1. In dimensionless form, the masses become 
m1,i = 1 − µi and m2,i = µi and these masses are located 
along the xi-axis at a distance −µi and 1 − µi from the 
origin, respectively. The period of both systems now 
becomes 2π. 

To model the acceleration from the Solar radiation 
pressure, an ideal-sail model is used. The ideal-sail 
model assumes a perfectly flat, specular reflecting sail 
surface. This means that absorption, re-rediation, and 
wrinkles in the sail are neglected [29]. This assumption 
results in a radiation pressure force that is perpendic-
ular to the sail surface, in the direction of the normal 
vector ˆ n. The performance of a photon sail can be ex-
pressed using its lightness number β [29]. The lightness 
number is a performance ratio that describes the radi-
ation pressure acceleration relative to the gravitational 
acceleration of the star that emits the radiation. The re-
lation between the Solar lightness number β⊙ and the 
lightness number relative to another star depends on the 
mass and luminosity of the respective star [28]. This re-
lation can be expressed as βk = ϵk β⊙, with the ratio ϵk 

defined as ϵk = Lk m⊙
L⊙mk 

, see Table 1. The subscript k is 
used to distinguish between the three stars AC-A, AC-B 
and AC-C (k = A, B, C) The photon-pressure accelera-
tion acting on a sail in a binary-star system is different 
from that in a single-star system, because in a binary 
system, the sail will receive radiation emitted by two 
stars. When considering the binary star system, Eq. 7 
given in Reference [28] is used; when the sail is in the 
AC-C/Proxima b system, the sail acceleration is defined 
by Eq. 2 in Reference [14]. To potentially increase the 
capabilities of the sail in the binary system, both a one-
sided reflective and a double-sided reflective sail accel-
eration model are used, as described in Reference [28]. 
To describe the orientation of the sail with respect to the 
incoming light, a normal vector n̂k is introduced (k = 
A, B, C). The normal vector’s direction is expressed by 
using the cone and clock angles αk and δk . The cone 
angle is the angle between the normal vector ˆ nk and the 
local r̂k -axis. The clock angle is the angle between the 
η̂k -axis and the projection of the normal vector on the 
plane perpendicular to vector r̂k (the θ̂k , η̂k -plane). The 
cone and clock angles in the departure system are mea-
sured with respect to star AC-A and in the arrival system 
with respect to star AC-C. 

4. Methodology 

To design a photon-sail transfer trajectory between 
AC-A/AC-B and AC-C/Proxima b, a method based on 
the patched restricted three-body problem approxima-
tion [12, 13] is utilized. This section describes this 
method, as well as an extrapolation method to reduce 
the computational load associated with the trajectory 
propagation in the arrival phase, and a brief overview of 
the optimization problem. The sail configurations ana-
lyzed in this study are based on previous research [10]. 
Four sail configurations (indicated with number 1 to 4) 
are evaluated: a single-sided and double-sided sail with 
two different lightness numbers. The lightness num-
bers for configurations 1 and 2 represent a lower limit 
that appeared to ensure sufficient acceleration and de-
celeration during the departure/arrival phases (β = 100). 
The lightness numbers for sail configurations 3 and 4 
are based on sail configurations previously studied for 
photon sailing in Alpha Centauri [6] (β = 1779). 

4.1. Patched restricted three-body problem approxima-
tion method 

The patched restricted three-body problem approxi-
mation method used in this work is based on previous 
studies to find photon-sail transfers between different 
restricted three-body problems [12, 13]. The unstable 
manifolds from the colinear Lagrange points in the de-
parture system are used to initiate motion away from 
the AC-A/AC-B system. In the arrival system, the sta-
ble manifolds are exploited to obtain motion towards the 
Lagrange points. However, the L4 and L5-points in the 
arrival system are stable and do not exhibit manifolds. 
But, manifolds can be artificially created by exploiting 
the photon-sail acceleration when the sail is positioned 
in a non-edge one attitude, which then disrupts the sta-
ble motion around the equilibrium. Note that the loca-
tion of the classical Largange points in the departure and 
arrival systems are given in Table 5 of Reference [10]. 

To add flexibility in the design of the transfers, a 
range of cone and clock angles is considered to create 
photon-sail assisted unstable and stable manifolds. A 
constant sail attitude is assumed along these photon-sail 
assisted manifolds to limit the search space (note that, 
from here on the addition ”photon-sail assisted” is omit-
ted for brevity). Additionally, the non-autonomous na-
ture of the ERTBP adds another dimension to the search 
space through the time-dependent true anomaly θi, at 
which a trajectory departs or arrives. The resulting man-
ifolds form tube-like structures called photon-sail dedi-
cated sets [12]. 
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The manifolds must then be connected in phase 
space and time to find a transfer trajectory. A detailed 
overview of the steps taken to find such transfers, using 
combinations of sail attitude and departure/arrival time, 
is given in Reference [10]. In order to evaluate the con-
nection between the photon-sail dedicated sets in phase 
space, the state of the sail is propagated to a Poincar´ e
section (surface Q). Surface Q is defined in the depar-
ture observer frame Od . It is a section perpendicular to 
the line connecting the barycenter of the departure sys-
tem and the barycenter of the arrival system, located ex-
actly halfway along this line. On this surface, the state 
error, in terms of position, velocity, and time, is evalu-
ated. To reach this surface, the unstable manifolds of the 
Lagrange points in the departure system are propagated 
forward in time up to surface Q. In the arrival system, 
the stable manifolds of the Lagrange points are propa-
gated backwards up to surface Q. These propagations 
are executed with the ode45 function in Matlab® using 
relative and absolute tolerances of 10−11 and 10−11 , re-
spectively The error at surface Q is calculated by com-
paring the state x f ,d and time t f ,d at the end of the un-
stable manifold with the state x f ,a and time t f ,a at the 
end of the stable manifolds. The magnitude of this error 
is an indication of the feasibility of the transfer trajec-
tory between the departure and arrival systems. The aim 
then becomes to find a set of initial/target conditions for 
the sail that will result in a minimum error (i.e., suc-
cessful) transfer trajectory. It must be noted that not 
all initial/target conditions result in a trajectory crossing 
surface Q. In such a case, the final state of that tra-
jectory will automatically produce a large error, so that 
the corresponding initial/target conditions are not fur-
ther considered. 

4.2. Arrival system cut-off 

A challenge lies in the computation cost associated 
with the propagation of the stable manifolds in the ar-
rival phase. This computational cost arises from the 
short period of the arrival system (11.186 days) rela-
tive to the total transfer time, which results in the need 
to propagate the state of the sail over numerous system 
revolutions, which can be up to thousands. Contrary, 
the departure system, with a period of approximately 
80 years, requires less computational effort. There-
fore, based on the research in Reference [10], a linear 
state extrapolation method is used (also called ”cut-off” 
method) to approximate the state and time of the sail 
at surface Q without having to propagate the entire (ar-
tificial) stable manifold. The method analytically com-
putes the state and time at which the sail reaches surface 

Q based on the state and time at a predefined cut-off 
point. 

4.3. Optimization problem 
The objective of the optimization problem is to min-

imize the error at linkage as described in Section 4.2. 
The following sections will further explain the objec-
tive function, constraints, and decision variables of this 
optimization problem. 

4.3.1. Objectives 
To find a feasible transfer trajectory, three objectives 

(J1, J2 and J3) are introduced that must be minimized. 
These objectives are the different errors on the surface 
Q: position error ∆r, velocity error ∆v, and time error 
∆t. The position and velocity errors are calculated us-
ing the Euclidean norm difference of the departure and 
arrival states on surface Q. The time error is calculated 
in days by subtracting the Julian Date at which the de-
parture phase passes surface Q from the Julian Date at 
which the arrival phase passes surface Q. It is impor-
tant to note that the error in sail attitude at surface Q 
is not considered in the optimization. This means that 
at surface Q, a sudden, rapid change in sail attitude is 
allowed. For a real-life mission scenario, the attitude 
rate of change might be limited and a sudden change 
not possible. To solve this, a transition phase could 
be added in between the departure and arrival phase, in 
which the sail is allowed to slowly change its attitude. 
To limit the complexity of the computation in this re-
search, such an approach is not used. The impact of this 
design choice on the final trajectory and results is not 
expected to be significant. 

4.3.2. Constraints 
A first set of constraints is defined to prevent that 

the non-reflective side of the sail faces one of the stars. 
For all sail configurations these constraints are given as: 
r̂C · n̂C ≥ 0, r̂A · ˆ nA ≥ 0, and r̂B · ˆ nB ≥ 0. To simplify 
the problem, these constraints are only enforced while 
the sail remains in the respective systems (departure or 
arrival) until surface Q is passed. This means, for ex-
ample, that while the sail trajectory is propagated in the 
departure system, the back of the sail is allowed to face 
AC-C. Similarly, in the arrival phase the back of the sail 
is allowed to face AC-A and AC-B. 

Another set of constraints must be enforced to pre-
vent the sail from passing one of the stars too closely. 
Although a significant sail acceleration can be obtained 
with close stellar flybys [30], the temperature of the sail 
can also increase to harmful levels. Therefore, a min-
imal distance is set to prevent the sail from heating up 
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too much. Based on values obtained from literature [7], 
a minimum safe distance of five stellar radii is used in 
this research: rA > 5 × RA, rB > 5 × RB, and rC > 5 × RC 

(where Rk represents the radius of the respective star). 

4.3.3. Decision variables 
Six variables are defined to tune the trajectories and 

find a smooth link on surface Q. These six variables 
(DV) are the cone and clock angles during each phase 
(αA,δA,αC,δC ) and the arrival/departure times (td and ta): 

DV = 
 
αA αC δA δC td ta 

 
(1) 

The bounds on the cone and clock angles during both 
phases are: −90◦ ≤ αA, αC ≤ 90◦ and 0◦ ≤ δA, δC ≤ 
180◦ . As described in the introduction, this work is 
inspired by the Breakthrough Starshot project, which 
would, in a best-case scenario, launch its sails in 2036, 
resulting in an arrival at the Alpha Centauri system 
around 2056. However, it was already shown [3, 9] that 
to get captured in bound orbit about AC-A or AC-B, 
which is a necessity when starting from one of the La-
grange points, longer travel times should be expected 
(up to 80 years). Therefore, it is more reasonable to 
postpone the time of departure of the mission investi-
gated here to a window in a more distant future. So, the 
bounds on the departure time from the Lagrange points 
are set to 01/01/2095 ≤ td ≤ 01/01/2195. The bounds 
on the arrival time depend on the sail configuration since 
a larger lightness number will result in shorter transfer 
times, and thus, a different arrival window is used for 
each lightness number (β = 100 and β = 1779). For 
sail configurations 1 and 2 (β = 100), the arrival time is 
set to 01/01/3042 ≤ ta ≤ 01/01/3122. For sail con-
figurations 3 and 4 (β = 1779), the arrival window is 
bounded as: 01/01/2330 ≤ ta ≤ 01/01/2420. Note that 
the search space for the departure and arrival time is 
slightly larger than one period of the departure system. 
This is intentionally chosen to investigate the impact of 
the true anomaly at departure, θd , on the transfer. 

4.4. Optimization methods 

In previous work [10], a design space exploration was 
executed, so that it is possible to limit the design space 
significantly and obtain initial results for a transfer be-
tween the two systems. The conclusions from that de-
sign space exploration are briefly summarized here. For 
sail configurations 1 and 2, using β = 100, the L2-point 
appeared to be the most suitable departure location, and 
the L1-point as the most suitable arrival location. For 
sail configurations 3 and 4, i.e., for β = 1779, the most 
optimal departure and arrival locations were L2 and L3, 

Figure 2: Results from the genetic algorithm for sail configuration 
3, where the displays the Pareto front with three objectives using the 
relative errors. 

respectively. In addition, in the current set-up, using a 
constant sail attitude along the manifolds, the double-
sided sail proved to not add any value to solving the 
problem. 

To solve the optimization problem defined in Sec-
tion 4.3, a genetic algortihm is employed. In particular, 
Matlab®’s implementation of a multi-objective genetic 
algorithm gamultiobj.m is employed. Three genetic al-
gorithm parameters are tuned to optimize the perfor-
mance of the algortihm. These parameters are the popu-
lation size, the number of generations, and the crossover 
rate. The tuning of these parameters resulted in a pop-
ulation size of 2000, a number of generations of 120, 
and a crossover fraction of 0.8. To account for the sta-
tistical nature of the algortihm, the algorithm is run for 
five different seeds2 (with the Mersenne Twister random 
number generator in Matlab®3,) to initialize the popula-
tion. For the sake of simplicity, the seeds in this paper 
are referred to as seed one to five, while their true values 
are given in the footnote. 

5. Results 

This section presents the results of the optimization 
problem and its implementation described in Section 4. 
The Pareto fronts for the five different seeds for sail con-
figuration 3 are given in Fig. 2, using relative errors. 
The relative errors are obtained by dividing the posi-
tion error ∆r by the total distance traveled, the velocity 
error ∆v by the velocity of the sail at surface Q, and 
the time error ∆t by the total travel time of the trans-
fer. The results show that the genetic algorithm is able 
to converge to solutions that minimize all three objec-
tives effectively. Many solutions fall within a 1-5% error 

2Seed nrs. (conf. 1): seed 1,2,3,4,5 = [4,12,43,58,12345]. Seed 
nrs. (conf. 3): seed 1,2,3,4,5 = [4,14,27,55,67] 

3https://nl.mathworks.com/help/matlab/ref/rng.html, access date 
15-02-2023 
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Figure 3: Departure phase: decision variable values (cone and clock 
angles) of the Pareto front solutions for sail configuration 3. 

Figure 4: Arrival phase: decision variable values (cone and clock an-
gles) of the Pareto front solutions for sail configuration 3. 

margin on all three objectives, and some solutions score 
even below 1% on all three objectives. This means that 
the genetic algorithm is able to find a link on surface Q 
between the departure and arrival phases within reason-
able error margins. However, from the Pareto fronts, it 
can be seen that the quality of the results varies among 
different seeds. For example, there is a substantial gap 
in the quality of the results obtained with seed 2 (best 
Pareto front) and seed 5 (worst Pareto front). This in-
dicates the dependency of the genetic algorithm on the 
initial population and the algorithm parameter settings, 
which might be further improved in future research. 

In Figs. 3-5, the values of the decision variables cor-
responding to the Pareto solutions is shown. It is im-
portant to note that, although these decision-variable 
values are plotted separately for the departure and ar-
rival phases (see Figs. 3 and 4), the plots are coupled. 
The departure phase shows clear convergence to an op-
timal solution for the cone and clock angles for each 
seed. All five seeds show convergence to a specific 
area in the solution space: −45 deg ≤ αd ≤ −65 deg, 
90 deg ≤ δd ≤ 110 deg. However, the arrival phase 
shows a less clear area of convergence; from Fig. 5, 
it can be observed that the algorithm converged to two 
different regions in the solution space. Only with seed 
2 did the algorithm converge to the area with cone an-
gles slightly larger than zero, whereas using the other 
seeds it converged to cone angles slightly smaller than 

Figure 5: Decision variable values (departure/arrival times) of the 
Pareto front solutions for sail configuration 3. 

zero. Figure 3 already showed that the Pareto front for 
seed 2 contains much better solutions than for the other 
seeds. Thus, four out of five seeds got trapped in a local 
minimum, and, even for seed 2, it is difficult to con-
clude whether it has converged to a globally optimal 
solution. Figure 5 shows the final values for the de-
parture and arrival times. Most solutions are in good 
agreement; the five seeds converged to the same, nar-
row area: 2140 ≤ td ≤ 2150, 2360 ≤ ta ≤ 2380. 
Since the multi-objective optimization results in a 3D 
Pareto front, no absolute best solution can be selected. 
However, since the objective is to minimize all three of 
them, it makes sense to look for a solution in the Pareto 
front closest to the origin, i.e., the solution (∆r, ∆v, 
∆t) = (0,0,0). Subsequently, the arrival phase is fully 
propagated to surface Q without employing the ”cut-off 
method” described in Section 4.2, using the initial con-
ditions and sail attitudes corresponding to the optimal 
solution. This yields the true arrival conditions on the 
Poincaré surface Q. The resulting trajectories can be 
found in Reference [10], but the corresponding decision 
variable values and remaining errors are given in Table 
3. 

The transfer time found in this research for the so-
lution with the smallest link error (i.e., 235 years for 
configuration 3, see Table 3) is much longer than re-
sults in the literature [7] for a similar sail configuration. 
In reference [7], a transfer time of 46 years from AC-
A/AC-B to AC-C was found. The reason for this shorter 
transfer time is that, in the cited work, the departure to-
wards AC-C is initiated with a much larger initial veloc-
ity. This larger initial velocity results from an interstel-
lar journey at a speed equal to several percentages of the 
speed of light. However, for the work presented in this 
paper, the initial inertial velocity depends the on much 
smaller rotational velocity of the Lagrange points, re-
sulting in much longer transfer times. When adding the 
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Table 3: Best results from the genetic algorithm for sail configurations 1 and 3. The results give the six decision variables for each phase, as well 
as the times at linkage tQ,d and tQ,a, and link errors. 

Departure loc., 
arrival loc. 

αd, αa 

[deg] 
δd, δa 

[deg] 
td, ta 

[yyyy − mm − dd] 
tQ,d, tQ,a 

[yyyy − mm − dd] 
Transfer 

time [yrs] 
∆r 

[AU ] 
∆v 

[km/s] 
∆t 

[days] 

Sail conf. 1 L2,L1 -56.40, 5.11 98.65, 106.35 2143-02-27, 3168-09-02 2666-11-25, 2667-09-03 1025 70.32 0.236 281.52 
Sail conf. 3 L2,L3 -53.66, 30.07 99.53, 92.93 2144-11-03, 2379-03-18 2269-03-13, 2268-10-02 235 9.13 0.761 161.08 

75-80 years needed to reach AC-A/AC-B from Earth [7] 
to the 235 year travel time for sail configuration 3 (β = 
1779, one-sided), a total mission time of approximately 
320 years results. This total mission time includes some 
margin to maneuver to the L2 point of the AC-A/AC-B 
system after the sail’s interstellar journey. 

6. Conclusion 

In this paper, a methodology to compute transfer tra-
jectories from the colinear Lagrange points in the Alpha 
Centauri A/B (AC-A/AC-B) system to all five Lagrange 
points of the Alpha Centauri C (AC-C)/Proxima b sys-
tem has been presented. The photon-sail assisted man-
ifolds originating from the departure Lagrange points 
and those arriving at the arrival Lagrange points are 
forwards and backwards propagated up to a suitable 
Poincar´ e section where the link errors between the man-
ifolds in terms of position, ∆r, velocity, ∆v and time, 
∆t, are evaluated. Results were provided for two par-
ticular transfers depending on the lightness number, β, 
used: 1) For β = 100 from AC-A/AC-B L2 to AC-
C/Proxima b L1; 2) For β = 1779 from AC-A/AC-B 
L2 to AC/Proxima b L3. The best result for β = 100 
showed remaining link errors of: ∆r = 70.32 AU, ∆v = 
0.236 km/s, and ∆t = 281.52 days, with a total transfer 
time of 1025 years, departing in the year 2143 and ar-
riving in 3168. The best result for β = 1779 showed re-
maining link errors of: ∆r = 9.13 AU, ∆v = 0.761 km/s, 
and ∆t = 161.08 days, with a total transfer time of 235 
years, starting in the year 2144 and arriving in 2379. 
These errors are small considering the total distance 
travelled and time passed until reaching the Poincaré 
section as well as the velocity at the Poincar´ e section. 
These results demonstrate that it is most likely possible 
to find transfers between the Lagrange points of the AC-
A/AC-B and AC-C/Proxima b systems with the purpose 
of, for example, visiting Proxima b. However, starting 
these transfers to Proxima b from the Lagrange points 
in the AC-A/AC-B comes at the cost of a much longer 
travel time than those previously found in literature [7] 
where the large velocity of the sailcraft after its inter-
stellar journey was exploited to reach Proxima b from 
AC-A/AC-B in only 46 years. 
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